

Application No.9

MSCmedium

We can provide a culture medium suitable for your specific purpose.

Please feel free to contact us for a consultation.

Switch to Animal origin free

Xeno-Free
Medium
2023~
No humanderived

components

AnimalOrigin-Free
Medium
2023~
No animalderived

components

Mammalian MSC Medium 2024~

2024~
For the proliferation of canine-derived MSCs

Enhance cytokine production

Inhibit cell aggregation

Cytokine Production Medium

2024~

Successfully enhanced the cells' cytokine production

Since developing serum-free medium for MSCs in 2022, we have continued development tailored to user needs.

Blood Coagulation Inhibitory Medium

2024~

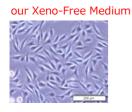
Inhibits the expression of CD142, a cellular procoagulant factor

Medium for 3D Culture

2024~

Successfully suppressed cell aggregation

MSC Establishment Medium

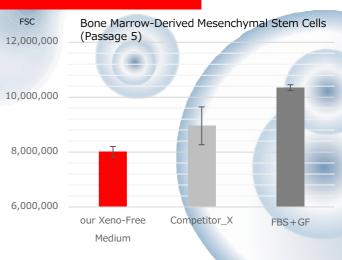

2025~

Optimized for MSC establishment

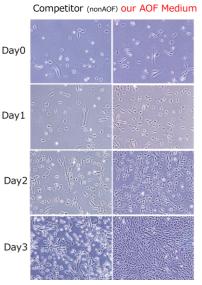
Case 1: Inhibition of Cell Enlargement by Xeno-Free Medium

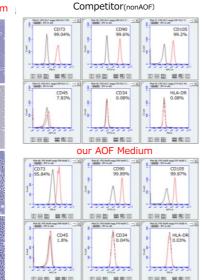
While hMSCs are observed to have a tendency toward cell hypertrophy upon repeated passaging, hMSCs cultured in our Xeno-Free Medium showed suppressed hypertrophy and maintained a more undifferentiated state compared to cells cultured in competitor media or FBS + GF medium.

*FSC (Forward scatter) = Indicates cell size.



*10% FBS + GF: Medium supplemented with growth factors added to 10% FBS medium.





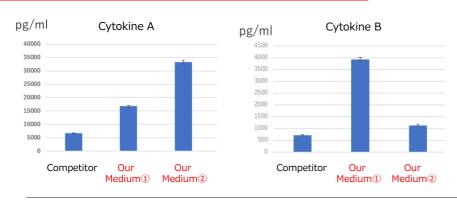
Case 2: Animal-Origin-Free Medium

Out of more than 20 candidate media, two Animal-Origin-Free (AOF) media were able to support proliferation for 4 passages or more, and the surface markers showed high values compared to the control medium.

Case 3: Culture of Canine MSC Lines

We enabled the culture of canine amniotic membrane MSC lines in serum-free medium, previously requiring FBS serum medium.

Competitor serum free Medium


A high number of dead cells are observed in suspension.

our serum free Medium

Showed good proliferation.

Case 4: Evaluation of Cytokine Production

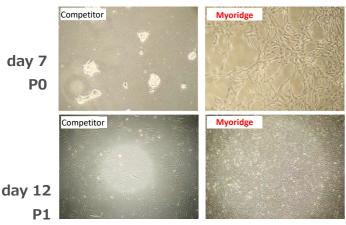
Umbilical cord-derived MSCs were cultured in T25 flasks using a competitor medium, our medium 1, and our medium 2 for four days. The culture supernatant was then collected, and the cytokine concentration was measured using ELISA.

Compared to the competitor medium, our medium ① and our medium ② showed higher cytokine concentrations in the culture supernatant, and also tended to show higher production per cell count.

Regarding the production of Cytokine A, our medium ② showed a higher tendency than our medium ①, while for Cytokine B, our medium ① showed a higher tendency.

Case 5: Shortening the Manufacturing Timeline via Refined MSC Establishment and Culture Protocol from Adipose Tissue

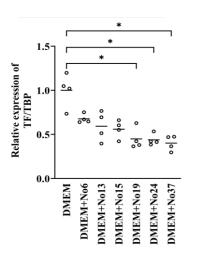
The conventional method for recovering over 100 million MSCs, starting from seeding a small amount of adipose tissue, typically takes 4 to 7 weeks. However, by using our improved establishment and expansion protocol and medium, it is now possible to culture them within 2 to 3 weeks (only 2 passages) without the use of special equipment.

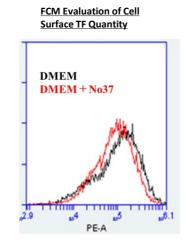


Establishment Process	Expansion Process
Establishment Medium 5 0 \sim 1 0 0 mL	Proliferation Medium 5 0 0 \sim 7 0 0 mL
7∼14 days	5~10days

adipose tissue

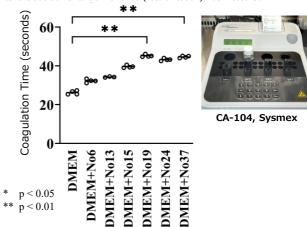
Our MSC medium supported proliferation up to 1x10e9 cells after 16 days of culture.




Comparison of Cell Counts of MSCs Established from 0.2 g of Adipose Tissue in Competitor Medium and Our MSC Medium

Case 6: Development of a Culture Supplement to Suppress Tissue Factor (TF) Expression Related to the Prothrombotic Potential of MSCs

Tissue factor (TF; CD142), one of the extrinsic blood coagulation factors, is considered a contributing factor to the prothrombotic potential of MSCs. We screened over 3,000 small molecule compounds from our library to identify those effective in inhibiting TF. This resulted in the development of a culture supplement capable of suppressing TF expression even in FBS-containing medium. We performed the following three evaluations on Adipose-Derived MSCs (ADSCs) cultured in DMEM/10%FBS supplemented with 6 hit supplements (No. 6, 13, 15, 19, 24, 37) identified during screening:


Supplements No. 19, 24, and 37 significantly suppressed TF expression.

The amount of TF on the ADSC surface was decreased in the supplement-added group.

Clotting Time Measurement of ADSCs and Human Plasma (Clotting Assay)

ADSC cell suspension ($1.5 \times 10e5$ cells/mL, containing citrate) was mixed with an equal volume of human blood plasma. The mixture was set in an automatic coagulation measuring device (CA-104, Sysmex), and the clotting time (seconds) after the addition of calcium chloride (recalcification) was measured.

ADSCs cultured with Supplements No. 19 and 37 showed a significant extension of the coagulation time when mixed with human plasma, indicating a reduction in procoagulant potential.